Polynomial maps with strongly nilpotent Jacobian matrix and the Jacobian Conjecture

نویسندگان

  • Arno van den Essen
  • Engelbert Hubbers
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of and Open Problems on Hessian Nilpotent Polynomials

In the recent work [BE1], [M], [Z1] and [Z2], the well-known Jacobian conjecture ([BCW], [E]) has been reduced to a problem on HN (Hessian nilpotent) polynomials (the polynomials whose Hessian matrix are nilpotent) and their (deformed) inversion pairs. In this paper, we prove several results on HN polynomials, their (deformed) inversion pairs as well as on the associated symmetric polynomial or...

متن کامل

Some Properties and Open Problems of Hessian Nilpotent Polynomials

In the recent progress [BE1], [M] and [Z2], the wellknown Jacobian conjecture ([BCW], [E]) has been reduced to a problem on HN (Hessian nilpotent) polynomials (the polynomials whose Hessian matrix are nilpotent) and their (deformed) inversion pairs. In this paper, we prove several results on HN polynomials, their (deformed) inversion pairs as well as the associated symmetric polynomial or forma...

متن کامل

The Jacobian Conjecture: linear triangularization for homogeneous polynomial maps in dimension three

Let k be a field of characteristic zero and F : k → k a polynomial map of the form F = x + H, where H is homogeneous of degree d ≥ 2. We show that the Jacobian Conjecture is true for such mappings. More precisely, we show that if JH is nilpotent there exists an invertible linear map T such that T−1HT = (0, h2(x1), h3(x1, x2)), where the hi are homogeneous of degree d. As a consequence of this r...

متن کامل

Jacobian Conjecture and Nilpotent Mappings

We prove the equivalence of the Jacobian Conjecture (JC(n)) and the Conjecture on the cardinality of the set of fixed points of a polynomial nilpotent mapping (JN(n)) and prove a series of assertions confirming JN(n).

متن کامل

A Reduction of the Jacobian Conjecture to the Symmetric Case

The main result of this paper asserts that it suffices to prove the Jacobian Conjecture for all polynomial maps of the form x + H, where H is homogeneous (of degree 3) and JH is nilpotent and symmetric. Also a 6dimensional counterexample is given to a dependence problem posed by de Bondt and van den Essen (2003).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017